Exponentialfunktion durch 2 Punkte (Rekonstruktion)
Aufgabe Neue Aufgabe
Gegeben seien die Punkte $P_1(\, -3{,}5 \mid -3 \,)$ und
$P_2(\, 5 \mid -1 \,)$.
Ermittle rechnerisch die Funktionsgleichung der Exponentialfunktion durch $P_1$ und $P_2$. Zeichne den Graphen.
Allgemeiner Ansatz, Einsetzen der Punkte: Anzeigen
\[\begin{array}{rrcl}
& y & = & c \cdot a^x \\[2mm] P_1:\; & -3 & = & c\cdot a^{ (-3{,}5) } \\[1mm] P_2:\; & -1 & = & c\cdot a^{ 5 } \\[1mm]
\end{array}\]
Lösung des Gleichungssystems (Divisionsverfahren): Anzeigen
\[\begin{array}{rrcrcll}
I:\; & -3 & = & c &\cdot& a^{ -3{,}5 } & \\ II:\; & -1 & = & c &\cdot& a^{ 5 } & \\ \hline II:I:\; & 0{,}333 & = & 1 &\cdot& a^{ 8{,}5 } & \quad 8{,}5 = 5 - (-3{,}5)
\end{array}\]
\[\begin{array}{rcll}
a^{ 8{,}5 } & = & 0{,}333 & \quad\mid\;\;\sqrt[ 8{,}5 ]{\Rule{0pt}{1ex}{0pt}\quad} \\[.5mm] a & \approx & \underline{ 0{,}878 } & \\[.5mm] [\dots]\quad c & \approx & \underline{ -1{,}9 } & \\[3mm]
f(x) & = & -1{,}9 \cdot 0{,}878 ^{x} & \\ \hline
\end{array}\]
Graph: Anzeigen